KATA LOGO Mathematik – Statistik – Roadmap: Von der Hypothese zum p-Wert

0. Das eigentliche Forschungsziel ist: Beweis der eigenen Hypothese H₁

Dafür muss Nullhypothese H₀ falsifiziert werden können

- \rightarrow **Achtung!** Es gibt einen Trend zur vorschnellen Ablehnung (α -Fehler).
- \rightarrow Festlegung für die Wahrscheinlichkeit (WS), dass Forscher genau diesen α -Fehler machen (siehe Punkt 3).

Formulierung der inhaltlichen Hypothese Ho 1. Entscheidung: Zweiseitige / einseitige / einfache / zusammengesetzte / spezifische / unspezifische Beispiel: Münzwurf zweiseitiger Hypothesentest H_0 H_1 **Nullhypothese** Gegenhypothese Annahme über die Wahrscheinlichkeits-Verteilung der Zufallsvariablen ZV (Normalverteilung ...) Dies ist die Behauptung! Parametrische Verfahren: H₀ macht Aussage über ≥ 1 Parameter der Verteilung, z. B. p und/oder μ. Nichtparametrische Verfahren: H₀ macht keine Aussage über Verteilung. Formulierung je nach Interessenlage.

Gruppe I behauptet: $p > p_0 \Rightarrow H_0$: $p \le p_0$	Gruppe I behauptet also: H_1 : $p > p_0$		
Gruppe II behauptet: $p < p_0 \Rightarrow H_0 : p \ge p_0$	Gruppe II behauptet also: H_1 : p < p_0		
z. B. P (X = Kopf) = 0,5			
Ungerichtet: "Es besteht kein Unterschied"	Ungerichtet: "Es besteht ein Unterschied"		
Gerichtet: "Median ist nicht < oder sogar > als"	Gerichtet: "Median von Gruppe 1 ist < als".		
Verteilung ist			
2 Merkmale haben einen Zusammenhang / keinen Zusammenhang (letzteres oft H_0).			
Gruppen unterscheiden sich durch Merkmale.			
Merkmale hab	Merkmale haben Parameter		
Inhaltliche Hypothese in stat	Inhaltliche Hypothese in statistische Hypothese übersetzen		
Für parametrische Fragestellungen • einseitige Frage: H0: ϑ ≤ ϑ0 gegen H1: ϑ > ϑ0 • einseitige Frage: H0: ϑ ≥ ϑ0 gegen H1: ϑ < ϑ0 • zweiseitige Frage: H0: ϑ = ϑ0			
Bestimmen des Annahme- und Verwerfungsbereichs durch Festlegen des Signifikanzniveaus			
Annahme- und Verwerfungsbereich sind für die Interessengruppen unterschiedlich			
Signifikanzniveau (5 %) ist komplementär zur Sicherheitswahrscheinlichkeit (95 %)			
Sicherheits- oder Vertrauenswahrscheinlichkeit: $1 - \alpha$ (bei 0,95 = $1 - 0,05$)			
l .			

2.

3.

Annahme- und Verwerfungsbereich kann mit σ-Umgebung festgelegt werden \rightarrow Bei 95 %: μ -1,96 σ und μ + 1,96 σ

4. Bestimmen des Testverfahrens

Zunächst Einteilung der Variablen in Skalenniveaus

- 1. Nominalskaliert mit > 2 Kategorien
- 2. Nominalskaliert mit 2 Kategorien
- 3. Ordinalskaliert
- 4. Intervallskaliert und nicht normalverteilt
- 5. Intervallskaliert und normalverteilt

5. Bestimmung der Güte des gewählten Tests

Güte 1: Teststärke = Trennschärfe = T = power = 1-β

Mit welcher WS entscheidet Test zugunsten H1 (falls richtig)?

Güte 2: β = Wahrscheinlichkeit, dass ein bestehender Unterschied nicht erkannt wird.

Güte 3: 1-β = Wahrscheinlichkeit, dass ein bestehender Unterschied aufgezeigt wird. Dies ist die eigentliche Teststärke.

Güte Kriterium Nr. 1 eines Tests: Objektivität = Ist Testergebnis unabhängig von jeglichen Einflüssen?

Güte Kriterium Nr. 2 eines Tests: Reliabilität = Zuverlässigkeit, wie genau misst der Test, was er misst?

Güte Kriterium Nr. 3 eines Tests: Validität = Grad der Gültigkeit: Misst der Test, was er messen soll?

Gütefunktion g: Für parametrische Tests und bei festem Stichprobenumfang n (z. B. 36) und SN α (5%). Ordnet jedem möglichen Parameterwert u die Wahrscheinlichkeit für Ablehnung von H0 zu. Man berechnet die Gütefunktion also nur für den Ablehnbereich. Als Variablen bei z. B. der Hypergeometrischen Verteilung errechnet man nur die Güte von N (alle Werte) und K, aber nicht für n oder k (die beiden letzteren werden zufällig gegeben). $u \rightarrow g(u) = P$ (H0 wird abgelehnt | u ist der wahre Wert des unbekannten Parameters).

6. Ziehen der Stichprobe (z. B. Münzwurf mit p = 0,5 und SN = 5 %)

	ht → Kein Signifikanztest		
	Kann man annehmen, dass dieser Zusammenhang auch in Ω besteht? Wenn ja → Signifikanztest Klassifikation der Daten: Verhältnis-, Intervall-, Ordinal-, Nominalskala		
7.			
	Voraussetzung für parametrische Tests: Normalverteilung der Daten		
	Voraussetzung vorhanden?	Voraussetzung nicht vorhanden?	
	Stichworte: Restfehler und Homogenität der Varianzen	 Daten-Transformationen Nicht-parametrische Tests Computerintensive Methoden 	
8.	Zusammenfassung der Daten		
	Graphisch	In Zahlen	
	Stem-and-Leaf Histogramm Summenkurven Box-and-Whiskers	Lage- und Streuungsparameter Konfidenzintervalle Bootstrap	
9.	Teststatistik berechnen und zu Prüfgrö	Teststatistik berechnen und zu Prüfgröße (optimalen Stichprobenumfang) standardisieren	
	Art des Tests hängt von Stichprobengröße n und jewe	ils aufgestellter H ₀ ab	
a.	Für das Münzbeispiel: EW μ = $\mathbf{n} \cdot \mathbf{p}$. Bei 36 Würfen ist μ = 36 \cdot 0,5 = 18		
b.	Für das Münzbeispiel: STA $\sigma = \sqrt{n \cdot p \cdot (1-p)} = \sqrt{9} = 3$.	Für das Münzbeispiel: STA $\sigma = \sqrt{n \cdot p \cdot (1-p)} = \sqrt{9} = 3$. (Laplace ist in etwa erfüllt: $\sigma > 3$)	
c.	Für das Münzbeispiel: Für Abdeckung einer 95 % Wahrscheinlichkeit steht in Tabellen für die σ-Umgebung: z = 1,96		
d.	Für das Münzbeispiel: Umgebung festlegen: μ - 1,96 ·	Für das Münzbeispiel: Umgebung festlegen: μ - 1,96 · 3 und μ + 1,96 · 3 \rightarrow X = 12,12 und X = 23,88	
e.	Für das Münzbeispiel: Entscheidungsregel aufstellen: Verwirf Annahme, dass Erfolgswahrscheinlichkeit P = 0,5 ist, wenn die Anzahl der Wappen X < 13 oder X > 23 ist.		

Liegt Stichprobenergebnis (= Testgröße) also im Annahmebereich, wird nicht die Hypothese bestätigt, sondern man entscheidet sich durch die vorher festgelegte Entscheidungsregel, sie weiter als richtig anzusehen.	
Ist diese WS < 0,05 →	
abzulesen an Verteilung der Testgröße →	
wenn kein Zusammenhang in Ω $ o$	
Testent	scheidung
Man will immer die Nullhypothese ablehnen, also man will verwerfen! Ist sie hier (zu α = 0,05) abzulehnen?	
Bei Ablehnung der Nullhypothese: Ergebnis ist signifikant!	
 Stichprobenergebnis: Ist im Annahmebereich Wenn H0 nicht zum SN α = 0,05 abgelehnt werden kann, ist H0 korrekt Ist H0 korrekt, wird aber abgelehnt: α-Fehler α-Fehler gibt die WS für H0-Ablehnung an WS für einen α-Fehler ist höchstens α (0,05) Kontrolle des α-Fehlers durch Oberschranke α Wenn WS für α-Fehler geringer, steigt WS für β-Fehler 2.	 Stichprobenergebnis: Ist im Verwerfungsbereich H0 ist zum SN α abzulehnen Wenn H0 abgelehnt wurde, kann nicht zu 100% auf H1 geschlossen werden, da Ablehnung zu 5% H1 (für z. B. p > 0,5) ist korrekt Ist H1 korrekt, H0 wurde aber nicht abgelehnt → β-Fehler! Wenn WS für α-Fehler geringer, steigt WS für β-Fehler
Bei α = 0,05 ist WS = 0,95 für die richtige Entscheidung H $_0$ abzulehnen.	β-Fehler ist kein eigentlicher Fehler, da der Test in diesem Fall keine Aussage macht. Trotzdem möchte man ihn vermeiden.
Zu gegebenem α ist eine Nullhypothese genau dann abzulehnen. wenn p ≤ α gilt.	

10.

	= = = = = = = = = = = = = = = = = = =	
11.	Testen von Hypothesen (Sind Ergebnisse zufälliger Natur oder nicht?)	
a.	Assoziationen zwischen ≥ 2 Variablen	
	Unterteilung in abhängige und unabhängige Variablen ist sinnvoll: Regression	Unterteilung in abhängige und unabhängige Variablen ist nicht sinnvoll: Korrelation
b.	Vergleich von 2 Durchschnittswerten (x quer und y quer)	
	1 Stichprobe und 1 bekannter Wert:	One-sample-t-Test und/oder Konfidenzintervall
	2 gepaarte (= abhängige = verbundene) Stichprobenwerte:	Gepaarter t-Test Oft sind derselben Person 2 Werte zugeordnet → Differenzen bilden
	2 unabhängige Stichproben:	Ungepaarter t-Test
c.	Vergleich von > 2 Durchschnittswerten: Varianzanalyse ANOVA	
	Unterschiede zwischen festen und zufälligen Effekten	
	Bei 1 Faktor: Einfache ANOVA ? Entspricht das F-Test auf Lokationsunterschied?	Bei ≥ 2 Faktoren: a. 1 fester, 1 zufälliger Effekt: Geblockte ANOVA b. ≥ 2 feste Effekte: Mehrfaktorielle ANOVA
d.	Vergleich von beobachteten (Stichproben) und erwarteten absoluten Häufigkeiten	
	χ²-Test	
	 Daten sind Zufallsdaten Immer mit Tabelle mit absoluten Häufigkeiten Diskrete Verteilungen Es gibt nur endlich viele mögliche Ausprägungen der zu u 	ntersuchenden ZV (x1, x2,, x _n)
12.	Entscheidungsfindung mittels p-Wert (Überschreitungs-Wahrscheinlichkeit)	

p-Wert: Grad der Unwahrscheinlichkeit. Wie glaubhaft ist ein solcher gemäß Daten extremer Versuchsausgang, wenn H0 wahr ist? p-Wert zeigt WS für solche oder extremere Stichproben-Ergebnisse, wenn H0 gilt. Teststatistik zugrundenehmen: 1 - Sm-1 (TS) = z. B. 1 - S35 (TS) → ausrechnen mit Software R.

HO ablehnen oder nicht? Hoher p-Wert heißt immer: Nicht signifikant, also Werte sind Ergebnis des Zufalls. Vergleich von p-Wert zu Signifikanzniveau. Je kleiner p-Wert, desto stärker spricht er gegen HO. p-Wert = 0,01: So ein kleiner Wert könnte - falls Ho gilt - durch Zufall auftreten, aber die WS dafür ist ≤ 0,01.

p-Wert im Beispiel: $P(T \ge 2,92) \approx 1-S5(2,92) \approx 0,7123$ (falls H0 gilt) mit S5 aus chi (χ)-Verteilung mit S = 6-1 Freiheitsgraden

Bei (quantitativ) überzufällig starker Abweichung der Daten von HO-Gültigkeit (so dass es keine Zufallsstreuung mehr ist) testet man mit Hilfe des p-Werts.

p-Wert: Gibt die WS an, unter H0 das beobachtete Stichprobenergebnis oder einen in Richtung der Alternativen extremeren Wert zu erhalten.

Je kleiner der p-Wert, desto unwahrscheinlicher ist das erhaltene Ergebnis, wenn H0 wahr ist. Ist p-Wert kleiner oder gleich α , so wird H0 verworfen. Bei p = 0, gilt H0 nicht. Große Werte sagen nur was aus, wenn H0 gilt.

Man nimmt den am wenigsten "plausiblen" Wert, z. B. Trefferzahl 0 bei p > 0,4 bei n = 8. Hier nimmt man k= 0 und setzt es z. B. in die Binomialverteilung ein.

p-Wert = 0,95 bedeutet: Zu 95 % ist sicher, dass Ergebnisse nicht zufällig sind. Zu 95 % sind Ergebnisse der Stichprobe auch Ergebnisse der Variablen.

p-Werte kann man unabhängig vom Signifikanzniveau ausrechnen (kleinstmögliche Oberschranke für WS für diesen oder einen noch unwahrscheinlicheren Wert - bei H0)

b.

Entscheidungsfindung mittels Ablehnungsbereich	
Nur bei manchen Tests. Anwendung der <i>Testfunktion oder Teststatistik T</i> .	z. B. t-Test und χ^2 -Anpassungstest.
Prüfwert = Realisation einer Teststatistik anhand einer Stichprobe.	
H ₀ wird abgelehnt ⇔ T(D) ∈ A. Mit einer vom Zufall abhängigen Zahl T (D), den Daten D und dem Ablehnungsbereich A.	
Aus den Daten D errechnet sich p-Wert	

	Signifikanz: Kann das Muster in der Stichprobe erklärt werden durch ?		
	Zufall	System	
Ja	Wenn ja, dann hätte Muster eine Wahrscheinlichkeit von ≤ 5 %	Ein in den Daten sichtbares Muster ist signifikant, wenn ein System dahinter steckt und der Zufall zu ≥ 5% ausgeschlossen werden konnte.	
Nein	Wenn ein in den Daten sichtbares Muster nur schwer durch Zufall zu erklären ist, ist es signfikant		